Closing Mon: 10.2
Closing Wed: 3.5 (part 1) Closing Fri: $\quad 3.5$ (part 2)

Entry Task:
In both cases, find $\mathrm{dy} / \mathrm{dx}$.

3.5 Implicit Differentiation

Motivation: Consider the unit circle

$$
x^{2}+y^{2}=1
$$

This equation does NOT define a function. We say it implicitly defines more than one function.

In particular, it defines:

$$
y=\sqrt{1-x^{2}} \text { or } y=-\sqrt{1-x^{2}}
$$

General Notes

We say $F(x, y)=0$ implicitly defines one or more functions $y=y(x)$.

If we can think of y as a function of x, then we can differentiate $F(x, y(x))=0$, directly.

But, we must appropriately use the chain rule.

Inverse Functions:
We write inverse functions as
$y=f^{-1}(x)$ which is equivalent to
$f(y)=x$.

We can implicitly differentiate

$$
\begin{aligned}
\frac{d}{d x}[f(y)=x] & \Rightarrow f^{\prime}(y) \frac{d y}{d x}=1 \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{f^{\prime}(y)}
\end{aligned}
$$

